সম্ভাবনা অপেক্ষক (Probability Function) হলো দৈব চলকের মানগুলোর সম্ভাবনা বন্টনের একটি ফাংশন। নিচে সম্ভাবনা অপেক্ষক সম্পর্কিত কয়েকটি সমস্যা এবং সমাধান দেওয়া হলো:
একটি ছক্কা নিক্ষেপ করা হয়েছে। \(X\) দৈব চলকটি ছক্কার মুখের সংখ্যা নির্দেশ করে। ছক্কাটি ন্যায়সঙ্গত হওয়ায় প্রতিটি মুখের সম্ভাবনা সমান। \(P(X=x)\)-এর মান নির্ণয় করুন।
ছক্কা নিক্ষেপের সম্ভাব্য ফলাফল: \(X = {1, 2, 3, 4, 5, 6}\)।
প্রতিটি মানের জন্য \(P(X=x) = \frac{1}{6}\)।
সম্ভাবনা অপেক্ষক:
\[
P(X = x) =
\begin{cases}
\frac{1}{6}, & x \in {1, 2, 3, 4, 5, 6} \
0, & \text{অন্যথায়।}
\end{cases}
\]
নিচের দৈব চলকের জন্য \(P(X = x)\)-এর সম্ভাবনা একটি বৈধ অপেক্ষক কিনা যাচাই করুন।
\[
P(X=x) =
\begin{cases}
0.2, & x = 1 \
0.3, & x = 2 \
0.5, & x = 3 \
0, & \text{অন্যথায়।}
\end{cases}
\]
সম্ভাবনা অপেক্ষক বৈধ হওয়ার শর্ত:
উভয় শর্ত পূরণ হওয়ায় এটি একটি বৈধ সম্ভাবনা অপেক্ষক।
একটি বাক্সে ৫টি লাল বল এবং ৩টি নীল বল আছে। একটি বল এলোমেলোভাবে তোলা হলে, \(X = 1\) যদি বলটি লাল হয় এবং \(X = 0\) যদি বলটি নীল হয়। \(P(X=1)\) এবং \(P(X=0)\) নির্ণয় করুন।
মোট বলের সংখ্যা: \(5 + 3 = 8\)
একটি দৈব চলক \(X\)-এর জন্য \(P(X=x)\) নিচের মতো দেওয়া হয়েছে:
\[
P(X=x) =
\begin{cases}
0.2, & x = 1 \
0.5, & x = 2 \
0.3, & x = 3
\end{cases}
\]
\(E(X)\) নির্ণয় করুন।
গাণিতিক প্রত্যাশার সূত্র:
\[
E(X) = \sum_{x} x \cdot P(X = x)
\]
এখন, \(E(X)\)-এর মান নির্ণয়:
\[
E(X) = (1 \cdot 0.2) + (2 \cdot 0.5) + (3 \cdot 0.3) = 0.2 + 1.0 + 0.9 = 2.1
\]
ধরা যাক \(f(x) = kx\), যেখানে \(x \in [0, 2]\), একটি সম্ভাবনা ঘনত্ব ফাংশন (PDF)। \(k\)-এর মান নির্ণয় করুন।
PDF-এর মোট ক্ষেত্রফল ১ হওয়া উচিত:
\[
\int_{0}^{2} f(x) dx = 1
\]
এখন \(f(x) = kx\) বসিয়ে সমাধান করি:
\[
\int_{0}^{2} kx , dx = 1
\]
\[
k \int_{0}^{2} x , dx = 1
\]
\[
k \left[ \frac{x^2}{2} \right]_{0}^{2} = 1
\]
\[
k \cdot \left(\frac{2^2}{2} - \frac{0^2}{2}\right) = 1
\]
\[
k \cdot 2 = 1 \implies k = \frac{1}{2}
\]
সুতরাং, \(f(x) = \frac{1}{2}x\)।
একটি দৈব চলক \(X\)-এর সম্ভাবনা ঘনত্ব \(f(x)\) নিচের মতো দেওয়া হয়েছে:
\[
f(x) =
\begin{cases}
2x, & 0 \leq x \leq 1 \
0, & \text{অন্যথায়।}
\end{cases}
\]
এর জন্য \(F(x)\) বিন্যাস অপেক্ষক নির্ণয় করুন।
CDF-এর সংজ্ঞা:
\[
F(x) = \int_{-\infty}^{x} f(t) dt
\]
\(0 \leq x \leq 1\)-এর জন্য:
\[
F(x) = \int_{0}^{x} 2t , dt
\]
\[
F(x) = \left[t^2\right]_{0}^{x} = x^2
\]
সুতরাং:
\[
F(x) =
\begin{cases}
0, & x < 0 \
x^2, & 0 \leq x \leq 1 \
1, & x > 1
\end{cases}
\]
উপরোক্ত সমস্যাগুলো সম্ভাবনা অপেক্ষকের বিভিন্ন দিক যেমন, বৈধতা যাচাই, গাণিতিক প্রত্যাশা নির্ণয়, এবং বিন্যাস অপেক্ষক সংক্রান্ত ধারণাগুলো পরিষ্কারভাবে তুলে ধরে। এগুলো পরিসংখ্যান ও সম্ভাবনা তত্ত্বের মূল ধারণা নিয়ে কাজ করার ক্ষেত্রে গুরুত্বপূর্ণ।
আরও দেখুন...